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Abstract - Induction motors are expensive and the backbone of every industry. There would be no production when 
induction motors break down. It is also costly to repair them after a sudden shutdown. Industries are gradually adapting 
to predictive maintenance to prevent unnecessary shutdowns and reduce the cost of maintenance. This paper's 
objective is to make the predictive maintenance of induction motors more reliable by adding fault detection. This will 
ensure the reliability of the induction motor, as it will continuously run to increase production quantity and quality 
while lowering production costs. This project uses secondary stator current data from a three-phase induction motor 
to detect and predict inter-turn short circuit faults. The stator current data can detect a higher percentage of electrical 
faults. The predictive maintenance toolbox in MATLAB is used to achieve the fault detection and prediction 
algorithm. Two classification algorithms, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) are used 
to detect and predict the inter-turn short circuit fault. It is found that the selected classifiers of the SVM algorithm 
gave almost a perfect prediction accuracy as compared to the classifiers of the KNN algorithm. The suggested fault 
detection and prediction in induction motors work very well, increasing the machine's reliability by decreasing the 
breakdown time and maintenance cost. 
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1. Introduction 
 Industries have been the driving force of a 
good economy. Almost all industries rely on 
induction motors for their functioning, and it 
consumes more than 50% of the total generation 
capacity of industrialized nations [1]. Induction 
motors have high efficiency, performance, and 
reliability, and their speed can easily be controlled 
electronically [2], making them the most widely 
used motors in the industries. These motors are 
expensive and operating them under faulty 
conditions can cause deviation in their regular 
performances, more damage, and reduce the 
machine's lifespan. They are very expensive to 
replace or repair when they break down. The cost of 
repairing a machine after failure is three times the 
cost of performing predictive maintenance on that 
same machine [3].  
 When these machines break down, the 
economy comes to a standstill, as there would be no 
production of goods and services, affecting the 
economy. This makes it crucial for the recent 
research interest in monitoring the condition of 
induction motors to detect any fault and failure in 
advance. Most industries have started implementing 
predictive maintenance in their equipment to make 

them reliable. However, the prediction of faults in 
their machines would not always be accurate. There 
could be times when the machine will suddenly 
develop faults without a warning. Hence, this 
project will focus on combining the detection and 
prediction of inter-turn short circuit faults in 
induction motors using the Predictive Maintenance 
toolbox in MATLAB [4]. 

 
2. Literature Review 
 Condition monitoring is a technique of 
checking a particular machinery condition while it is 
in use. These conditions can be pressure, current, 
voltage, temperature, vibrations, and others. It entails 
gathering data, analyzing it, comparing it to trends, 
benchmarks, and sample data from similar healthy 
machines. These condition monitoring techniques 
include oil analysis, vibration analysis, Motor Current 
Signature Analysis (MCSA), Infrared thermography, 
and many more.   
In [5], vibration analysis is used to monitor vibration 
levels and patterns from an electrical machine to detect 
abnormalities. Vibration levels rise when mechanical 
problems like bearing faults occur in high-speed 
rotating equipment. It is a cost-effective and time-
saving method of obtaining condition indicators for 
machine health management. However, this requires 
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expensive accelerometers and accompanying wiring. 
This restricts its use in various applications, 
particularly in tiny machines where cost is a significant 
consideration when selecting a condition monitoring 
approach. Moreover, when the diagnosis is based on 
numerous motors working in tandem with much noise, 
this constraint becomes even more complicated. 
Oil Analysis is another means of performing condition 
monitoring in induction motors. Much information 
about the induction motor’s running state can be 
gathered from its lubricating oil. The induction 
motor’s wearing state developing trend can be 
monitored to detect a potential problem in time [3]. 
However, the analysis intervals are not frequent, 
which  can cause the machine to totally break down.  
Motor Current Signature Analysis is also a condition 
monitoring technique developed by the Oak Ridge 
National Laboratory [6]. It offers a sensitive, efficient, 
and cost-effective way to monitor a wide range of 
industrial machines in real-time. This technique can be 
implemented using either time-domain or frequency 
domain, and it is best used for bearing failure and 
inter-turn short circuit detection. However, it involves 
a lot of mathematical computations making it error 
prone. 
The dynamic system model is typically used in model-
based fault diagnostic techniques. The actual system 
and model output benefit the industrial system's 
model-based techniques. The simulation and the real 
world can be compared, and actual data outputs, and 
hence, through visualization, the state of a motor can 
be determined. Physical modelling can be used to 
create dynamic models. The most important challenge 
with model-based techniques is its dependent on 
explicit motor models [7]. The correctness of the 
model describes how the diagnosis system behaves.  
 
3. Methodology 
 This section focusses on the detailed steps 
taken to achieve a detection and prediction model. 

3.1  Design Theory  
 Inductance and resistance are the main 
parameters of the circuit of an Induction motor. 
Studying the outcome of these parameters' 
malfunctioning helps identify the parameters and the 
conditions that can affect their value. These two main 
parameters are further divided into resistance, self-
inductance, and mutual inductance. 
 
3.1.1  The Resistance  
 

 The resistance value is given as: 

R =!"
#

                      (1) 
where R is the resistance measured in ohms (Ω), l is 
the length of the cable in meters (m), A is the cross-
sectional area of the cable measured in meters square 
(m2), and the ρ is the resistivity measured in ohm 
meter (Ω.m).    
 
3.1.2  Self-Inductance  
 Magnetizing and leakage inductance make up 
the self-inductance in stator and rotor windings. 
Because the windings of a healthy machine are 
identical, the self-inductance of all stator windings 
will be similar. 

LA=LB=LC=Lms+Lℴs                                     (2) 
Magnetizing inductance of the stator is given by: 

Lms = 
$̥"&'(!)

*+
        (3) 

 
 Where l is the motor’s length, r is the radius 
of the cross section of the motor, g is the radial length 
of the air gap and Ns represents the effective number 
of turns of the stator windings.  
 
3.1.3  Mutual Inductance  
 Mutual inductances can exist from stator-to-
stator as shown in equation (4).  

Lxsys = 
$̥"&'()

*+
 Cosθxsys                    (4) 

where θxsys is the angle between the stator windings x 
and y, and Lxsys is the inductance between any stator 
winding x and any other stator winding y. 
By substituting equation (3) into equation (4), 

Lxsys = LmsCos θxsys           (5) 
 The normal winding distribution in a healthy 
induction motor has two stator windings that are 
displaced 120˚ apart in one direction and 240˚ apart in 
the other direction. Hence Cos θxsys   in equation (5) can 
be rewritten as: 
   Cos θxsys   = Cos(±120˚) = Cos(±240˚) = -0.5   (6) 
 
From equations 2-6, the mutual inductance between 
two stator windings is: 
        LAB = LBA = LAC = LCA=LCB = -0.5Lms          (7)                                                                                        
 
where θxsys is the angle that exist between any stator 
winding x and y [8]. 

 The above equations show that the inductive 
flux in the motor's windings decreases when there is 
an inter-turn short circuit fault in the motor. This is 
because, when there is a short circuit, the current 
passes through the windings with the least or no 
resistance. This decreases the Ns from equation (3) 
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and, in turn, decreases the flux. The reduced flux in 
one phase winding of the stator exposes the motor to 
unbalanced currents, which causes a negative 
sequence current (an indication of the presence of an 
inter-turn short circuit fault). 

3.2 Experimental Set-up 
 Secondary data for this project was obtained 
from an online data source of an induction motor [9]. 
The secondary data is obtained from a test bench 
consisting of a 4-pole and 3-phase induction motor 
with a rated amperage and voltage of 3A and 220V, 
respectively. The testbench is a 1hp motor that 
operates at a frequency of 50Hz. The data has time 
labeled as 'TIME,' and current values from the four 
poles of the motor labelled as CH1, CH2, CH3, and 
CH4. The stator circuit was re-wound, allowing access 
to the winding's ramifications to introduce inter-turn 
short circuits. Different short-circuit levels were 
emulated, ranging from less severe to most severe. 

3.2.1 Fault Detection and Prediction Approach 
 This project focuses on using MATLAB 
Predictive Maintenance Toolbox to detect and predict 
inter-turn short circuit faults of an induction motor. 
The Predictive Maintenance Toolbox includes 
functions and interactive apps like the Diagnostics 
Feature Designer and Classification Learner App that 
help extract and rank the four current values (CH1, 
CH2, CH3, and CH4) by the importance of the data 
and models, including statistical and time-series 
analysis. Figure 3.1 shows the block diagram for the 
detection and prediction algorithm. 

 
Figure 3.1: Detection and prediction algorithm 

3.2.2    Data Acquisition  
 Secondary data consisting of the current 
values of the motor was used for this project. The 
secondary dataset was already grouped into seven (7), 
from 0 to 6. Data under the 0 group was the data for a 
healthy motor with no faults. Those under group 1 
were slightly faulty, and they were in the initial stages 
of developing inter-turn short circuit fault. The 
severity of the fault increased as the group number of 
the motor increased from 0 to 6 [9]. Figure 3.2 (a) 

shows a picture of the sample current data of a healthy 
under no-load motor data, and hence, belonging to the 
group 0. Figure 3.2 (b) also shows a sample current 
data of a faulty motor under no-load condition, and 
hence belonging to group 6. The full dataset was 
imported into MATLAB for the model training. The 
current rating of the motor used for the experiment was 
3A. Looking at the current values, namely, CH1, CH2, 
CH3, and CH4, Figure 3.2 (a) has values far below the 
3A current rating of the motor used to get this 
secondary data. 
 On the other hand, Figure 3.2 (b) has current 
values either very close to or beyond the rated current 
value of 3A. The CH1, CH2, CH3, and CH4 current 
values follow the same trend for motor groups (1-5). 
The current values get close to or go beyond the rated 
current value of 3A, making the current values 
important features for machine learning model 
training.  
 

                                                     
 
 
 
 
 
 
 
 

 
 

(a)                                   (b) 
                        Figure 3.2: (a) healthy no load. (b) Faulty no-load 

motor data. 
3.2.3      Pre-processing of Data 
  The pre-processing of data involved 
analyzing the current signals and time series of the 
secondary motor data and preparing the signals for the 
next step. Pre-processing the data entailed converting 
unstructured or raw data into a usable format. Data 
pre-processing required tracing signals into several 
domains to extract condition indicators from them and 
generate data ensembles for effective handling of data. 
The random features discovered using signal 
processing techniques and feature extraction were the 
current signals of the motor [10]. Time-domain 
analysis was the main feature extraction technique 
used in the data pre-processing stage. In analyzing the 
signals, operations like filtering, smoothing, and 
labelling were performed on the signals. 

3.2.4  Identification of Condition Indicators 
 The Diagnostic Feature Designer App in 
MATLAB analyzed and extracted the most important 
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current values from the dataset. The current values 
were sorted and selected based on one-way ANOVA 
statistical tool for further processing. The 
identification of condition indicators from the one-
way ANOVA helped rank the current values for 
effective training of the model in the Classification 
Learner App in MATLAB. The current values were 
ranked to select the most important ones as condition 
indicators from the raw data. The current values 
selected as the most important were the current values 
from CH1, CH2, CH3, and CH4 of the original dataset. 
Ranking and selecting the most important set of 
current values with one-way ANOVA ensured that the 
model's accuracy improved.  
 
3.2.5   Training of Model 
 The most important current values selected 
and ranked in the Diagnostic Feature Designer App 
were exported into Classification Learner App in 
MATLAB. For this model, all the current values 
(CH1, CH2, CH3, and CH4) were selected by the 
Diagnostic Feature Designer App. The model was 
classified and trained using Machine Learning 
algorithms deployed in the Classification Learner App 
in MATLAB. The Classification Learning App 
separated the data imported into MATLAB into three 
sets to increase the accuracy of the Machine Learning 
Models. 70% of the data was reserved for the training, 
15% was used for validation, and 15% was used for 
testing. The classification of the different stages of 
inter-turn short circuit fault depended on the 
conditions indicator (rated current value of 3A), which 
distinguished a healthy motor from a faulty one. The 
Classification Learner app was used to monitor the 
induction motor’s present conditions and detect and 
diagnose faults. It determined the machine’s health if 
it was failing and what was failing. The selected 
condition indicator trained a model using different 
machine learning algorithms to detect and predict 
inter-turn short circuit fault in the induction motor. 
The machine learning algorithm for model training 
focused on Support Vector Machines (SVM) and the 
K-Nearest Neighbor (KNN) algorithms. These 
algorithms were chosen because they have a high-
performance ability to accurately predict even with 
limited data.  

3.3   Detection of Inter-Turn Short Circuit Fault 
 In a short-circuit fault for a given phase, the 
number of turns of the winding will reduce, causing 
the resistance to increase, as shown in equation (1). 
As shown in equation (2), the inductive leakage flux 
also decreases. The inter-turn short circuit was 

introduced for the testbench used by taking out 
insulations from sections of the coil of a phase and 
connecting it to a conductive material. The severity of 
the inter-turn short (the percentage of short turns) 
depended on the particular turn of the coil on which 
the conductive material is connected [9]. Detecting 
the inter-turn short-circuit fault was done in three 
ways: threshold comparison, the negative current 
sequence, and the machine-learning algorithm. 
 
3.3.1   Negative Sequence Current 
 The current sequence of the healthy motor is 
the positive sequence current. When the inter-turn 
short circuit fault occurs, two of the windings of the 
current signals are swapped. Based on that, an inter-
turn short circuit can be detected. 
 
3.3.2   Threshold Comparison  
 Comparing the threshold of healthy motor 
data signals to a faulty one was one of the methods 
used to detect the inter-turn short circuit fault. The 
rating of the induction motor whose current values 
were used for this project was 3A. Hence, when the 
signals of these current values went beyond this 
threshold, it indicated that the induction motor was 
faulty.  
3.3.3   Machine Learning Algorithm  
 The machine learning algorithm detects 
inter-turn short circuits of the stator windings when 
the algorithm predicts that the test data is classified 
under group 6. For group 6 motors, they have no 
remaining useful life. The motor has completely 
developed the inter-turn short circuit fault.   

3.3.4   Prediction of Inter-turn Short Circuit Fault 
in Stator Windings 
 Prediction of the inter-turn short circuit fault 
in the stator windings of the induction motor was 
based on the results of the machine learning 
algorithms deployed. The algorithm forecasts the 
inter-turn short circuit fault level by returning a 
number from 0 to 6. Number 0 meant there was no 
inter-turn short circuit fault in the stator of the 
induction motor. As the number increased from 0 to 
6, the severity of the inter-turn short circuit fault 
increased, making group 6 the faulty motor with a 
complete inter-turn short circuit fault. 
 
4. Results and Discussion 
This section focuses on the results from the 
implementation of both the detection and predictive 
algorithm deployed in chapter three. Statistical 
analysis is performed to select the best algorithm. 
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4.1   Fault Detection Results 
 The inter-turn short circuit fault was detected 
in three main ways: threshold comparison, negative 
sequence current and machine learning algorithms. 
However, the machine learning was able to detect and 
at the same time predicts the inter-turn short circuit.  
 
4.1.1   Threshold Comparison  
 Inter-turn short circuit fault was detected by 
comparing the amplitude of any motor current signal 
to the threshold of the current signals of a healthy 
motor. The online testbench motor had a rated current 
of 3.0 A, so the inter-turn short circuit fault was 
detected whenever the signal went above the threshold 
of 3.0A, as seen in Figure 4.1. However, this method 
was inefficient because other faults could make the 
current signals go beyond the threshold. It was also 
unable to detect the level of inter-turn short circuit.     

Figure 4.1: Threshold comparison of current signals 
 
4.1.2   Negative Sequence Current 
 A balanced set of three-phase currents has 
positive sequence currents only as shown in Figure 4.2 
(a). Figure 4.2 (a) has unfiltered signals. A negative 
sequence current is a clear indication of abnormality 
in the system. During the negative sequence, the 
direction of two of the current signal switches is seen 
in Figure 4.2 (b). This fault detection method was, 
however, not effective. This is because other 
asymmetry factors could cause the induction of 

negativ 
 
 
 
 
 
 
 
 
 

 
 
 

(b) 
 

Figure 4 2: (a) Positive sequence current graph. (b) 
Negative sequence current 

 
4.1.3   Machine Learning Algorithm 
 The group six (6) motor data had fully 
developed inter-turn short circuit fault. So, when the 
machine learning algorithm predicted a motor under 
group 6, it meant an inter-turn short circuit was 
detected. The machine learning algorithm is fully 
explained in next sections. 
 
4.1.4   Fault Detection and Prediction Algorithm 
 Two machine learning algorithms, Support 
Vector Machine (SVM) and K-Nearest Neighbor 
(KNN) were used to detect and predict the inter-turn 
short circuit fault. The fault was detected when the 
machine learning algorithm classified the data under 
group six motor data. It meant the inter-turn short 
circuit had already occurred, and there are 0 weeks of 
remaining useful life of the motor. Under this section 
is the results from the procedures in training the SVM 
and KNN models

negative sequence current into the system. 
 
 
 

 
 

4.1.5   Feature Extraction and Ranking  
  The current values (CH1, CH2, CH3, and 
CH4) were extracted from the three sets (no-load, half 
load, and full load) of healthy and faulty data. Figure 
4.3 (a) shows the lists of the ranked current values 
(CH3 first) extracted in the MATLAB Diagnostic 

                                    
 
 
 
 

 
 

(a) 

 Feature Designer App. Histogram plots from 
Figure 4.3 (b) also help investigate how the 
important current values in the different classes of 
motor separated across a bin. The best feature 
histogram is the one with the motor group appearing 
in different bins ranges in a particular 
histogram. Figure 4.3 (a) shows that CH3 was the set 
of current values ranked as the most important.  
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Figure 4.3 (b) explains it well as there are a lot of 
different motor groups across the CH3 bin in the 
histogram. The scatter plot from Figure 4.3 (c) further 
analyses the extracted features by investigating their 
relationship. For example, from Figure 4.3 (c), there is 
a high probability that when the current value from 
CH1 and CH3 are both 1A and belong to group 6, it 
will predict correctly. 
 

 
                                          (a)          
 

(                                     
(b) 

 

 
                                         (c) 
Figure 4.3: (a) Current signal sorting. (b) Current in 

histogram. (c) Scatter plot of current 
 
 

4.1.6   Results from Classification Algorithm for 
No-Load, Half Load and Full Load Induction 
Motors 
 After the feature extraction, the Support 
Vector Machine (SVM) and K-Nearest Neighbor 
(KNN) models were used to train the model. All SVM 
classifiers, namely linear, quadratic, and fine Gaussian 
SVM, had a classification accuracy of 99.8% for both 
no-load and half-load motors and 99.9% accuracy for 
the full load motor, as shown in Table 4.1. Figure 4.4 
(a) shows the confusion matrix, which is the same for 
the no-load and half-load states of the motor. All 
classifiers of the SVM model under no load and half 
load state of the motor had a prediction accuracy of 
99.8%. The model correctly predicted all the seven 
different groups of the motor fault (0-6) of the 
induction motor, except motors belonging to groups 3 
and 5. The algorithm correctly predicted only 99.8% 
of the groups 3 and 5 motor, and wrongly classified 
2% of them as belonging to group 2 and 4 respectively. 
Similarly, Figure 4.4 (b) shows the confusion matrix 
for the different SVM classifiers under the motor's full 
load state. The algorithm correctly predicted 99.9% of 
the groups the motor data belonged. Only 1% of the 
full load motor data was misrepresented as belonging 
to group 4, when it actually belonged to group 5.      
 
Table 4.1: Accuracies for SVM classifiers under 
different motor loads 

                       
 
 
 
 
 
 
 
 

 
 

Load State 
of Motor 

SVM Classifier Accuracy 

 
No Load 

Linear 99.8% 
Quadratic 99.8% 

Fine Gaussian 99.8% 
 

Half load 
Linear 99.8% 

Quadratic 99.8% 
Fine Gaussian 99.8% 

 
Full Load 

Linear 99.9% 
Quadratic 99.9% 

Fine Gaussian 99.9% 
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                          (a) 

 
 
 
 
 
 
 
 
 
 
 
                                     

(b) 
Figure 4.4: (a) SVM no and half load confusion 

matrix. (b) SVM full load confusion matrix. 
 

          Comparing the accuracies of the classifiers for 
both the SVM and KNN algorithms showed that the 
SVM algorithm was the best. The SVM algorithm had 
99.8% for no-load and half load, and 99.9% for full 
load state of the motor. Therefore, the SVM algorithm 
was chosen for statistical analysis to see if there is a 
significant difference between the three different types 
of motor load states (no-load, half-load, and full load). 
 
 
 

 
 
 
 

  
 
 
 
 
 
                                        (a) 
 
 
 
 
 

 
 

For the KNN classifiers, namely medium, coarse, and 
cubic KNN, the confusion matrix accuracy of the 
trained models was 96.1% for all the classifiers under 
the motor's no-load and half load state, as seen in 
Figure 4.5 (c). For the motor's full load, the confusion 
matrix accuracy for the medium, cosine, and cubic 
were 99.8%, 73.5%, and 99.7%, respectively, as 
shown in Table 4.2. 
 
Table 4.2: Accuracies for KNN classifiers under 
different motor loads 

 

 
 
 
 
 
 
 

                                          
                                      (b) 
 

 
 
 
 
 
 
 

                                                   
 
 
 
 
 
 
                                        

(c)

Load State 
of Motor 

KNN Classifier Accuracy 

 
No Load 

Medium 96.1% 
Coarse 96.1% 
Cubic 96.1% 

 
Half load 

Medium 96.1% 
Coarse 96.1% 
Cubic 96.1% 

 
Full Load 

Medium 99.8% 

Cosine 73.5% 
Cubic 99.7% 
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 (d) 
Figure 4.4: Confusion Matrices for the KNN models 

4.2.  Results from Statistical Analysis  
 The accuracy of the different classifiers of the SVM model 
under the different load states (no-load, half-load, and full 
load) was investigated to see if there was variation among 
them. Therefore, a one-way ANOVA test was performed on 
the SVM no load, half load, and full load accuracy values, 
as shown in Figure 4.6 (a). From Table 4.1, the accuracy for 
the different motor loads was almost the same, with no 
significant differences. The one-way ANOVA was 
performed to either reject or accept this null hypothesis. 
After the test, the p-value of 1, as shown in Figure 4.6 (b), 
was greater than the critical p-value of 0.05. Hence, the 
hypothesis that the accuracies for the SVM model are 
statistically insignificantly different was not rejected.	

            (a)                                        (b) 
Figure 4.6: (a) One-Way ANOVA graph.  (b) p-value 
for ANOVA 
 

5.  Conclusion 
 Induction motor predictive maintenance, also 

known as fault detection and prediction, is useful for 
monitoring equipment health. Predictive maintenance is a 
unique technique for diagnosing and prognosing faults in 
industrial machines. The accuracy of the inter-turn short 
circuit fault detection and prediction depends on getting 
accurate and enough data from the machine.

 The data is then pre-processed to identify condition 
indicators from them. A model is then trained with the 
condition indicators to get the relationship between the 
source of mistakes and projected damage [11]. Making an 
accurate prediction of machine fault is essential to avoid its 
breakdown, affecting production. Also, detecting and 
predicting faults in induction motor lowers maintenance 
costs and improve reliability and productivity. 
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